Vista Projects is a multi-discipline engineering firm and leader in the digital transformation of industrial projects. Our unique experience with data-centricA data-centric outlook is a core concept in digital project execution architecture where data is viewed as the most important and perpetual …, single-source-of-truth project execution has enabled us to engineer some of the most cost-effective energy processing facilities in North America.
Our highly collaborative and transparent approach has worked well with technology developers and facility operators seeking to modernize plant design methodology for biomass energy production. Contact us to schedule a demo and learn how a customized digital solution will benefit your biomass project.
Looking for more information? Download one of our related brochures to learn more about Vista’s engineering consulting services.
Project Experience Overview
Industrial Cogeneration
Given the breadth of biomass-based products, processing facilities function differently for each type of material. As a biofuels engineering company, Vista’s broad range of experience in cost-effective greenfield and brownfield engineering facility design is ideally suited to meet the needs of biofuel production facilities like a torrefied wood pellet plant.
Green diesel is a second-generation biofuel derived from renewable feedstock. Its chemical properties are similar to petroleum-based diesel, making it different from biodiesel.
Green diesel also differs from biodiesel in terms of its processing technology. Conventional biodiesel is usually produced via transesterification of animal fats, vegetable oils, or waste cooking oils.
Green diesel production involves a refining process like hydrogenation, which is also employed in petroleum refineries.
Biodiesel production is complex. Engineering designs for biodiesel processing facilities typically require an effective water treatment system and an efficient heating system. And when designing a biodiesel plant, it is important to detect and reduce equipment limitations.
As with any facility engineering project, when it comes to biofuels, Vista focuses on fit-for-purpose designs that benefit the owner’s total cost of ownership (TCO), an outlook that is particularly important in brownfield projects.
Retrofitting biofuel projects are about optimizing existing facilities with new equipment or technology to improve production efficiency while ensuring stringent quality requirements are met. Vista’s truth-based industrial engineering, which follows a data-centric approach to project execution, is particularly effective in brownfield biofuel applications, where new designs can be digitally verified with the scanned replicas of the as-built facilities.
Biodiesel plant upgrades often involve making improvements to transesterification reactors and distillation units. Engineering design solutions commonly focus on:
Composed primarily of carbon dioxide (CO2) and methane (CH4), biogas is obtained from the decomposition of organic waste. This usually involves microorganisms breaking down food scraps or animal waste in an anaerobic or oxygen-free environment.
In a biogas processing facility, this process occurs in an anaerobic digester and is accelerated by generating the best and most viable conditions for the microbes to proliferate and break down the organic materials efficiently.
Biogas processing entails slurrifying biowaste in a reception tank and heating it to a temperature of 38°C/100°F (to promote mesophilic bacterial growth), or 52°C/125.6°F (to promote thermophilic bacterial growth).
Biogas production begins in the anaerobic digester, where the waste is typically left for three weeks. The final stage in the process is to purify or upgrade the biogas and remove contaminants, such as hydrogen sulphide (H2S) or Ammonia (NH3).
Biogas processing plants typically have systems in place for odour control – an issue that plagues most waste treatment facilities.
Bio-based products are viable alternatives to fossil fuel feedstocks. Biofuels are derived wholly or partially from renewable materials, such as plants, and are used across different sectors. Bio-based production plays a significant feedstock diversification role in many industries.
Bio-based products are also used in the chemical industry. Noteworthy examples include:
Bio-ethanol is used as a key additive to gasoline and therefore has major applications in the biofuels transportation industry. It is primarily produced from free sugar, containing juices derived from crops such as:
Other raw materials used in bio-ethanol production are:
Oils and fats are processed for edible purposes around the world. Processing is primarily done to reduce and remove those components that adversely affect the taste and form.
Generally, a “rendering” process is used to extract fats and oils. Animal fat, such as lard, bone fat, and tallow, are examples of edible fats obtained via rendering. Fatty tissues are cut into small fragments which are then cooked and heated in digesters.
Other oil and fat processing methods:
Agrochemicals are products that assist in the protection and growth of plants and crops. Pesticides are the most common agrochemicals, used to prevent crops from infestation. Other forms of agrochemicals include:
Fertilizers refer to chemical compounds that are used to boost plant growth. They are sown in the soil to mitigate nutrient deficiency. Fertilizers, commonly categorized as organic or inorganic, are known to enrich the soil with nutrients, such as potassium, nitrogen, and phosphorus.
Fertilizer production plants are an important part of the agrochemical industry. These facilities produce both organic and inorganic (or synthetic) fertilizers that can help improve soil health and encourage better crop yields by:
While most fertilizers are solid, liquid fertilizers are also recommended for better coverage and faster results.
Fertilizers refer to chemical compounds that are used to boost plant growth. They are sown in the soil to mitigate nutrient deficiency. Fertilizers, commonly categorized as organic or inorganic, are known to enrich the soil with nutrients, such as potassium, nitrogen, and phosphorus.
Our unique truth-based industrial engineering execution model facilitates:
By structuring data in a single-source-of-truth (SSOT) environment, we simplify the digital transformation of your asset and help you make more informed decisions. Learn more about our system integration services.
Learn More